Nuevos Talentos Internacionales 2018

Desde 2000, el programa L’Oréal-UNESCO “La Mujer y la Ciencia” ha destacado los logros de las mujeres más jóvenes que se encuentran en las primeras etapas de sus carreras científicas. Cada año, el programa internacional de jóvenes promesas científicas (International Rising Talents) selecciona a las 15 científicas más prometedoras entre 275 becarias nacionales y regionales del programa L'Oréal-UNESCO “La Mujer y la Ciencia”. Estas jóvenes son el futuro de la ciencia y reconocer su excelencia ayudará a garantizar que alcancen su máximo potencial.

Estas científicas serán reconocidas el 21 de marzo de 2018, en una ceremonia que tendrá lugar al cierre de la Conferencia Científica que conmemorará el vigésimo aniversario del programa L’Oréal-UNESCO “La Mujer y la Ciencia”. Posteriormente, el 22 de marzo de 2018 tendrá lugar la ceremonia de entrega de los Premios L’Oréal-UNESCO “La Mujer y la Ciencia”.

ÁFRICA Y ESTADOS ÁRABES

 

Dra. Areej Abuhammad

Beca regional L'Oréal-UNESCO Levante y Egipto.
Escuela de Farmacia, Universidad de Jordania.
Medicina Fundamental.

La Insuficiencia Venosa Crónica (IVC) afecta al 57% de los hombres y al 77% de las mujeres1. Es causada por disfunción en el sistema venoso superficial o profundo de las piernas y puede provocar venas varicosas, cambios en la piel y úlceras venosas. El tratamiento quirúrgico de las venas varicosas superficiales es efectivo, pero también costoso y puede producir complicaciones como infecciones. El objetivo de la Dra. Areej Abuhammad es desarrollar terapias farmacológicas contra la IVC. “El tratamiento de muchas enfermedades se basa en concentrar e inhibir proteínas activas específicas llamadas enzimas”, explica. “Hacemos esto diseñando pequeñas moléculas químicas que son estructuralmente compatibles con las enzimas. Sin embargo, primero necesitamos entender la estructura de la enzima que tenemos por objetivo.”

La Dra. Abuhammad está trabajando en el diseño de un inhibidor selectivo de la metaloproteinasa de matriz-9 (MMP9 por su sigla en inglés), que está implicada en la degradación tisular que causa las venas varicosas. El primer paso es establecer la estructura del MMP9 en complejos con pequeños fragmentos químicos utilizando la cristalografía, una técnica para determinar la estructura molecular de los materiales cristalinos. Abuhammad describe su iniciación a la cristalografía de proteínas como un momento definitorio en su propia carrera. “El novedoso campo de la cristalografía de proteínas ha ayudado a dilucidar las formas y estructuras de proteínas importantes. Antes de los avances en este campo se sabía muy poco sobre la estructura física de componentes de la célula tan pequeños”. La Dra. Abuhammad inició el primer laboratorio de cristalografía de proteínas para el descubrimiento de fármacos en Jordania. Su objetivo es establecer terapias novedosas para la insuficiencia venosa crónica y otras enfermedades no infecciosas como el cáncer o la obesidad, al igual que para enfermedades infecciosas como la tuberculosis, la gripe aviar y el síndrome respiratorio de Oriente Medio.

1 - Onida, S., and Davies, A. H. (2016), Phlebology 31, 74-79.

 

 

Danielle Twilley

Becaria nacional L'Oréal-UNESCO Sudáfrica
Laboratorio de Cultuvo de células complejas vegetales, Universidad de Pretoria
Ciencias Biológicas, Ciencias de las Plantas Medicinales

El cáncer de piel es uno de los tipos de cáncer más comunes en Sudáfrica. El melanoma es el tipo de cáncer de piel más peligroso, y cerca del 86% de los casos de melanoma se atribuyen a la exposición al sol1. “El melanoma, explica Danielle Twilley, se propaga emitiendo señales que estimulan el crecimiento de nuevos vasos sanguíneos, en un proceso llamado ‘angiogénesis’, alimentando el cáncer con oxígeno, nutrientes y una vía de acceso a varias partes del cuerpo.” La angiogénesis se está convirtiendo en un objetivo atractivo para las terapias contra el cáncer, sin embargo, según el Instituto Nacional del Cáncer de Estados Unidos, actualmente no existen inhibidores de la angiogénesis disponibles para el tratamiento del melanoma2. Danielle Twilley trata de determinar si un compuesto aislado de una planta sudafricana, que encontró en investigaciones pasadas y que tiene una citotoxicidad significativa contra las células del melanoma, es capaz de inhibir tanto la angiogénesis como el crecimiento tumoral.

Para minimizar los daños causados a las células sanas cuando se administran dosis potentes en el entorno tumoral, Twilley está desarrollando el agente antiangiogénico en nanopartículas de oro, que ataquen únicamente al tumor su red vascular. Danielle Twilley explora el conocimiento autóctono de los medicamentos a base de plantas para aplicarlo al tratamiento del cáncer de piel y ha encontrado una planta tradicionalmente usada con alto contenido de antioxidantes que estimula el factor de protección solar (SPF por sus siglas en inglés) de un protector solar. Está muy implicada en el desarrollo de productos y ha tramitado patentes para asegurar beneficios a las comunidades indígenas. También planifica ensayos clínicos e interactúa con fabricantes.

1 - Parkin DM, Mesher D, and Sasieni P. 2011. Cancers attributed to solar (ultraviolet) radiation exposure in the UK in 2010. British Journal of Cancer 105, S66-S69.
2 - NCI. 2011. Online. Angiogenesis inhibitors. Available at: https://www.cancer.gov/about-cancer/treatment/types/immunoth... angiogenesis-inhibitors-fact-sheet (29/07/2017).

 

 

Dra. Hanifa Taher Al Blooshi

Becaria nacional L'Oréal-UNESCO Emiratos Árabes Unidos
Departmento de Ingeniería Química, Universidad Khalifa
Ingeniería química

Los derrames, frecuentes en la exploración y el transporte de petróleo, representan serias amenazas ambientales. Desde 2010 se han reportado más de 45 derrames importantes, y los cuatro que ocurrieron en 2016 vertieron unas 6.000 toneladas de petróleo en los océanos.1 Para acelerar la dispersión y la biodegradación del petróleo en el agua, se utilizan dispersantes químicos, que limpian hasta el 90% del derrame. Sin embargo, son agentes tóxicos cuyo uso es preocupante. En la actualidad se está trabajando para encontrar dispersantes ambientalmente inocuos y biodegradables. Los líquidos iónicos, también conocidos como agentes de diseño, fabricados a partir de desechos orgánicos, pueden servir para este propósito, lo que tiene además la ventaja de dar una segunda vida a estos detritus.

La Dra. Taher Al Blooshi está desarrollando un nuevo compuesto dispersante de petróleo a partir de materiales sostenibles, en particular basura, disponible en abundancia en los Emiratos Árabes Unidos. Se propone formular, producir y probar diferentes productos comparándolos con los agentes utilizados actualmente para dispersar diferentes tipos de petróleo y en diferentes condiciones de agua. Los hallazgos de su actual estudio podrían proporcionar una nueva fórmula que podría reemplazar los dispersantes tradicionales usados para remediar los derrames de petróleo. Un resultado positivo de tal investigación beneficiaría tanto al sector ambiental como al marino. La Dra. Al Blooshi investiga también sobre combustibles biodiesel para uso automotriz producidos a partir de aceite extraído de compuestos ricos en petróleo. “Tanto la producción de biodiesel como las tecnologías ecológicamente responsables son temas de investigación de gran interés en la ingeniería química en general, y en los Emiratos Árabes Unidos en particular”, afirma ella. Su investigación proporcionará soluciones sustentables para limpiar los derrames de petróleo y ayudará a proteger la biodiversidad.

1 - Oil tanker spill statistics 2016. 2017, The International Tankers Owners Pollution Federation Limited London.

 

 

Dra. Ibtissem Guefrachi

Becaria nacional L'Oréal-UNESCO en Túnez
Biodiversidad y Valorización de los recursos biológicos en zonas áridas, Facultad de Ciencias de Gabes en colaboración con el Biología Integrativa de Sistemas
Microbiología

Las bacterias resistentes a múltiples medicamentos corren el riesgo de revertir el enorme progreso que los antibióticos han traído a la lucha contra las infecciones. Se está llevando a cabo una búsqueda internacional por nuevos agentes antimicrobianos y algunos científicos están enfocando sus esfuerzos en las plantas. Los péptidos antimicrobianos, que se encuentran en ciertas variedades de leguminosas, parecen tener una potente actividad antibacteriana en pruebas de laboratorio. Los nódulos en las raíces de las plantas leguminosas son órganos simbióticos que albergan dentro de sus células miles de bacterias tipo rizobio que fijan nitrógeno, llamadas "bacteroides". La cohabitación con las bacterias ha llevado a estas plantas a evolucionar con adaptaciones que evitan que las células sucumban a las bacterias y que éstas sucumban ante la respuesta inmune de la célula.

La Dra. Ibtissem Guefrachi encontró que algunas especies de leguminosas, como la alfalfa, Arachis y Aeschynomenes (plantas tropicales), producen péptidos ricos en cisteína (NCR) que albergan a las bacterias, y ha revelado mecanismos que las hacen sensibles o resistentes a ellas. Ella actualmente está investigando la posible acción de péptidos sintetizados químicamente, similares a los de la NCR, contra patógenos fúngicos y bacterianos que son comunes en humanos como Candida albicans, que causa infecciones por levaduras o candidiasis bucal, y Clamidia Tracomatis, una infección común de transmisión sexual. Ella también observa posibles usos en la industria alimentaria y agrícola. La Dra. Guefrachi está motivada tanto por la curiosidad científica sobre el desarrollo simbiótico de plantas y bacterias, como por el deseo de ayudar a resolver problemas actuales. “Espero que esta investigación lleve a nuevas soluciones en salud y agronomía.” Los mecanismos de fijación simbiótica del nitrógeno presentes en las leguminosas también pueden permitir el desarrollo de formas para mejorar la fijación del nitrógeno en cultivos no leguminosos, reduciendo así la necesidad de fertilizantes nitrogenados que contribuyen al cambio climático y a la contaminación de las aguas superficiales.

 

ASIA-PACÍFICO

Dra. Weang Kee Ho

Becaria nacional L'Oréal-UNESCO en Malasia
Departamento de Matemáticas Aplicadas, Universidad de Nottingham/Cancer Research Malaysia
Ciencias de la Salud, Estadística en la Investigación Epidemiológica

Detección selectiva del cáncer de mama

En Asia, se estima que la incidencia del cáncer de mama aumentará hasta un 50% entre 2012 y 2025. A las mujeres a menudo se les diagnostica una enfermedad avanzada, y la supervivencia a cinco años en algunos países asiáticos es sólo del 49%, en comparación con el 89% en los países occidentales. 1 Un reto importante en los próximos años es aumentar las mamografías y la detección temprana en las comunidades desfavorecidas. La Dra. Weang Kee Ho está desarrollando una herramienta que puede ser utilizada para identificar las mujeres en mayor riesgo y enfocar los programas de detección en esta población. Existe una necesidad apremiante de contar con una herramienta cuantificadora de riesgos basada en el análisis genético asiático, ya que las estimaciones de riesgos existentes se diseñaron a partir de estudios realizados en personas europeas. La Dra. Ho está trabajando con datos genéticos combinando una serie de grandes estudios de cáncer de mama realizados en países asiáticos para identificar posibles marcadores genéticos comunes que sean útiles para la predicción del riesgo de cáncer de pecho en Asia.

Ella está poniendo el listón alto: “Los modelos de predicción de riesgo que incluyen sólo mutaciones genéticas comunes, pero no tienen en cuenta las mutaciones inusuales y otros factores de riesgo conocidos del cáncer de mama, no serían completos", enfatiza ella. Sin embargo, cree que con enormes esfuerzos de colaboración con otros expertos del equipo, este ambicioso objetivo es alcanzable. La Dra. Ho, una epidemiologa estadística, tuvo a las matemáticas como su primer amor. "Durante mis estudios de doctorado", cuenta," me di cuenta que las habilidades matemáticas que había adquirido podían ser una herramienta poderosa para responder a muchas preguntas científicas importantes". Ha trabajado sobre la epidemiología y genética del infarto, la  diabetes y otras enfermedades cardiovasculares, y continúa participando en colaboraciones internacionales en su trabajo más reciente sobre el cáncer de mama.

 

 

Dr. Hiep Nguyen

L’Oréal-UNESCO National Fellowship Viet Nam
Tissue Engineering and Regenerative Medicine Orientation, Biomedical Engineering Department, International University of Vietnam National Universities - Ho Chi Minh City
Medical engineering

Better access to health care for people living in remote and rural areas would help to improve quality of life, potentially prevent some degree of migration to cities, and avoid much disruptive travel into cities to treat injuries. “My current work,” Dr. Hiep Nguyen tells us, “focuses on biomaterials such as bio-glue, bio-tape and needleless suturing for wound repair that can be used directly by patients at home.” Her most recent project involves the development of a smart gel that is mainly formed by cross-linking hyaluronic acid (which contributes significantly to cell proliferation and migration) and chitosan (useful in tissue regeneration). It can carry other ingredients such as silver and curcumin nanoparticles for different specific applications. Her team is currently testing the gel to maximize safety and performance. The ultimate goal is a product that can be applied promptly on different types of wounds, helps eliminate bacteria and promotes rapid tissue regeneration. When applied, the gel will form a membrane to stop bleeding, absorb liquid from the wound and prevent infection from microorganisms.

My research goal,” she says, “is to study and bring new technologies from developed countries back to Vietnam, while also launching biomaterials and medicines originating in Vietnam on world markets.” She has just launched a start-up company to develop commercially viable biomaterials and is committed to developing research capacities in her country. Within the Biomedical Engineering Department, along with the Chair and colleagues, she strengthened the orientation in tissue engineering and regenerative medicine (TERM) by designing new courses, teaching, mentoring, building laboratories and helping to organize international conferences. The success of the TERM orientation contributed to the reputation of the Biomedical Engineering programme, which was ranked first in Vietnam and second among all programmes in the ASEAN (Association of Southeast Asian Nations) network of leading universities.

 

 

Dr. Yukiko Ogawa

L’Oréal-UNESCO National Fellowship Japan
Lightweight Metallic Materials Group, Research Center for Structural Materials, National Institute for Materials Science
Material engineering

Lightweight materials are increasingly in demand to improve fuel efficiency in vehicles, make electronic devices more portable and open up new possibilities for medical devices. Magnesium alloys are an appealing material precisely due to their light weight, however their use has been limited as they are difficult to shape into particular forms. Dr. Yukiko Ogawa succeeded in controlling the microstructure and mechanical properties of magnesium by heat treatment, which had previously been considered impossible. She further experimented with adding another element, scandium, to the alloy to arrive at an optimal combination of strength and ductility (the extent to which it can be deformed without breaking). In the process, she discovered that the material exhibited shape memory — it can be bent and deformed but reverts back to its original shape when exposed to heat or electricity.

Her research group is now investigating other properties that the alloy may have: biodegradable and well accepted in the human body, promising to overcome some of the difficulties currently seen with implantable devices such as stents. As a child, Dr. Ogawa wanted to become a scientist so she could develop novel things to help people. “Material science is the foundation of our modern society,” she says. “Improvements in the properties of materials and the development of new materials enables radical innovation.” Her research team is now working to adjust the composition of the alloy and the process employed to induce shape-memory behaviour, in order to enable affordable and scalable production. Her experiments also open new directions for the study of other lightweight alloys for use in more environmentally friendly transportation systems.

 

 

 

EUROPE

Dr. Radha Boya

L’Oréal-UNESCO National Fellowship United Kingdom
Condensed Matter Physics Group, University of Manchester
Physics

Nanostructures are ever present in nature, assuring the passage of substances to where they are needed and filtering out impurities. “Sub-nanometric channels are crucial for the essential functions of life that rely on transport of small ions across cellular membranes,” highlights Dr. Radha Boya who trained in physics in India and is currently conducting research in the UK. “It is only over the past two decades that we have started discovering the importance of the nanodimensions and the rich science hidden behind them.” Replicating these natural structures has potential uses in areas as diverse as water filtration, bioanalytics and drug delivery. Dr. Boya has found a way to make channels, or pipes, as she calls them, that are 10,000 times thinner than a human hair. Using graphene enabled her to overcome limitations caused by the roughness of other molecules.

Her pipes are made by the imprint in the graphene, which can either create a cavity useful for confining a substance, or a tunnel for transporting matter. These can be employed to sieve molecules and ions by size. The technique of making pipes by nanolithography developed by Dr. Boya is reproducible and flexible, providing an important tool for further development of artificial nanochannels with specific properties suited to different requirements. “I dream that my work could lead to better understanding of the natural protein water channels found in cellular membranes,” she says. This work provides the building blocks to new ways of desalinating and filtering water, and new techniques for fuel-gas separation from refineries.

 

 

Dr. Agnieszka Gajewicz

L’Oréal-UNESCO National Fellowship Poland
Faculty of Chemistry, University of Gdansk
Chemistry

Nanomaterials are rapidly changing the landscape of industrial and consumer products, from memory storage in our computers to solar cells to generate electricity and drug delivery systems. However, there are still major gaps in our knowledge on how these tiny particles affect the environment and human health. A proactive approach is needed, given lessons learned from the serious health risks posed by chemicals once considered harmless, such as the impact of asbestos (a mineral often used in insulation) on the lungs, or the insecticide DDT on birthweight. As a specialist in chemical informatics and marathon runner, Dr. Agnieszka Gajewicz is intent on anticipating hazards before they are released into our environment and our bodies.

With a great number of new nanoparticles introduced into commercial use every day, it is unrealistic to expect that each one will be subject to comprehensive risk assessment. Dr. Gajewicz is therefore developing efficient computational methods to establish the properties and toxicity of nanomaterials and accelerate pre-clinical assessment. For regulators, these methods provide a means of evaluating safety at early stages of new nanomaterial development, taking the whole product life cycle into account. “Compared with traditional laboratory work,” she explains, “computational methods enable the development of products that are safe by design, sifting through thousands of candidate chemicals.” Dr. Gajewicz’s work has caught the attention of regulators in Europe looking for ways to ensure effective hazard assessment of manufactured nanomaterials. Dr. Gajewicz sees many commonalities between her scientific passion for cheminformatics and her passion for running: “Running a marathon takes a lot of planning and organization, determination, perseverance and discipline — much like a career in science.”

 

 

Dr. Anna Kudryavtseva

L’Oréal-UNESCO National Fellowship Russian Federation
Laboratory of Postgenomic Studies, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Biological sciences

In Europe, 22% of all cancer diagnoses involve rare cancers, where treatments are less available and five-year survival rates are 47% compared to 65% for common cancers.1 Dr. Anna Kudryavtseva is attracted to scientific problems where knowledge is sparse, and was inspired to shift from surgical aspirations to biology following a lecture on single-cell organisms. “The most interesting part is doing something completely new, working on something that has never been properly researched before,” she says. In rare cancers called “paragangliomas”, especially the cancers of the head and neck on which she is working, she has striven to find a goal to reflect her aspirations. In these rare tumours, driver mutations that would permit targeted therapies are still largely unknown. While most are slow-growing and benign, for between 10% and 15% of patients, tumours become malignant and can metastasize.2 They are particularly dangerous as they occur very close to vital structures such as the carotid artery, and respond poorly to chemotherapy and radiation therapy.

These cancers have another distinction, in that the disruption of cells’ ability to extract and use energy is a primary cause of malignancy, while in most cancers it is a secondary phenomenon. It therefore provides an ideal focus for Dr. Kudryavtseva, whose prior work has examined energy metabolism in the progression of tumours. She is conducting genetic and epigenetic analysis of tumour samples, along with blood and lymph node samples, in order to identify differences between the three most common forms of head and neck paragangliomas. These genetic alterations will help to define prognostic markers for disease that will become malignant, so that treatment can be initiated and new drugs developed. An important component of the research lies in correlating genetic alterations with clinical characteristics to take into account the interaction between genetic characteristics and external and internal factors.

1 - Gemma Gatta, Jan Maarten van der Zwan, Paolo G. Casali, Sabine Siesling, Angelo Paolo Dei Tos, Ian Kunkler, Renée Otter, Lisa Licitra, Sandra Mallone, Andrea Tavilla, Annalisa Trama, Riccardo Capocaccia, Rare cancers are not so rare: The rare cancer burden in Europe, European Journal of Cancer, 2011; 47(17):2493-2511.
2 - Zhikrivetskaya S.O., Snezhkina A.V., Zaretsky A.R., Alekseev B.Y., Pokrovsky A.V., Golovyuk A.V., Melnikova N.V., Stepanov O.A., Kalinin D.V., Moskalev A.A., Krasnov G.S., Dmitriev A.A., Kudryavtseva A.V., Molecular markers of paragangliomas and Pheochromocytomas. Oncotarget, 2017;8(15):25756-25782.

 

 

Associate Prof. Duygu Sag

L’Oréal-UNESCO National Fellowship Turkey
Izmir Biomedicine and Genome Center, Dokuz Eylul University
Biological sciences, immunology

While our immune system defends us against many diseases, it is less effective against cancer. Recent breakthroughs have found ways to increase the immune system’s ability to find and eliminate cancer cells, however, one critical immune cell type within the tumour environment, known as “macrophages”, has not yet been targeted successfully for immunotherapy. Macrophages can be either anti-inflammatory and promote tumour cell proliferation, or pro-inflammatory and fight the tumour. The tumour environment is usually dominated by tumour-promoting macrophages.

The mechanisms that govern the switch between these two types of macrophage are poorly understood. “We have recently made the exciting discovery,” says Prof. Duygu Sag, “that macrophages that lack the cholesterol transporter ABCG1 become potent tumour-fighting macrophages and inhibit the progression of bladder cancer in preclinical studies.” Her team is now working to discover the molecular mechanisms that trigger this switch from tumour-promoting to tumour-fighting macrophages. “This may lead to the development of novel immunotherapeutic approaches for the treatment of cancer,” she suggests. Prof. Sag’s commitment to science began in high school: “While other girls had posters of celebrities on their walls,” she says, “I had photos of famous biologists and scientific posters hanging all over my room.” She is hopeful that science can help overcome the unprecedented problems facing the world: “Our arsenal of scientific knowledge to tackle those problems is now also unprecedented.”

 

 

Dr. Ai Ing Lim

L’Oréal-UNESCO National Fellowship France
Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States
Fundamental medicine

Our body has a beautiful design with a very precise system. Our immune system can create specific responses to target different pathogens to protect our body. However, today, there are more people suffering from asthma, dermatitis, food allergy and obesity, all of which link to our immune system. This suggests that we are experiencing a certain level of immune dysfunction. While the causes remain a mystery, laboratory studies have shown that a single infection can cause long-term damage to immune system balance. The babies born with microcephaly after their mothers were exposed to the Zika virus represent an alarming reminder of the long-term impact of maternal infection.

Pregnancy involves substantial changes in hormone, metabolism, microbiota and immunity. Moreover, pregnant women are more susceptible to a number of infectious diseases, including the influenza virus, listeria and toxoplasma, for example. All of this suggests that the foetal environment may be related to the immune disorders that we are facing, especially in high-income countries. Dr. Ai Ing Lim believes that maternal-foetal interaction in the uterine environment may hold the key to understanding the complexity of immune disorders. She is exploring how maternal exposure to infections during pregnancy impacts on the baby’s immune system. Her research involves laboratory studies on the impact of infections that commonly occur during pregnancy, such as the influenza virus, on immune system development and the baby’s susceptibility to inflammatory disease. She is building on previous discoveries on a new type of immune cell known as innate lymphoid cells, which play a crucial role in early immune responses to fight against various diseases. “Ultimately,” she says, “I hope that understanding how our immune systems work, especially in the maternal-foetal context, will lead us to resolve many infectious and inflammatory diseases.”

 

 

LATIN AMERICA

Dr. Selene Lizbeth Fernandez Valverde

L’Oréal-UNESCO National Fellowship Mexico
Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (UGA-LANGEBIO), Cinvestav
Biological sciences and genomics

Proteins are considered to be the fundamental building blocks of life and are receiving much scientific attention. Yet they are contained in less than 3% of our DNA. The vast number of RNAs, polymeric molecules essential in various biological roles such as coding, decoding, regulation, and expression of genes, that do not make proteins (known as “long non-coding RNAs” or lncRNAs) remain the relatively unexplored “dark matter” of the genome. Dr. Fernandez Valverde is intent on understanding the function and evolution of the thousands of lncRNAs that are present in most life forms, some of which are known to control gene expression and have been linked to human diseases such as cancer and diabetes.

This is one of the most exciting times to be involved in biological research” she enthuses. Technological advances enable scientists to obtain a full sequencing of DNA and RNA of an organism and “this wealth of information is allowing us to use evolutionary theory to identify which molecules are important in different organisms and contexts.” Dr. Fernandez Valverde is developing a framework that will permit studies of individual IncRNAs to identify structural motifs, groups of IncRNAs with shared characteristics, and associate these with functions. She uses computational methods to identify RNA sequences that are under evolutionary election. “For example,” she says, “we can identify RNAs whose expression increases in particular environments such as high altitude or high sun exposure, and identify how these changes are associated with the appearance and response to disease in humans, animals and crops.” She hopes the tools developed in her laboratory will enable scientists to interpret the impacts of the environment on genetic change by rapidly assigning functions to novel, uncharacterized RNA molecules.

 

 

Dr. Rafaela Salgado Ferreira

L’Oréal-UNESCO National Fellowship Brazil
Laboratory of Molecular Modeling and Drug Design, Computational Biology Group Universidade Federal de Minas Gerais, Belo Horizonte
Chemistry

Diseases that largely affect poorer countries do not always receive sufficient investment from pharmaceutical companies, leaving it to public universities to fill this important gap. Dr. Rafaela Salgado Ferreira leads the Laboratory of Molecular Modeling and Drug Design in Belo Horizonte, Brazil, with a mission to develop new drugs for neglected diseases. “We employ a strategy called rational drug design” she explains. “First, a protein which is essential to the pathogen is chosen as a target, then the structures of this protein are experimentally determined and computational techniques are used to select molecules that are most likely to work against the protein.”

Computational selection allows her team to consider millions of potential inhibitors and select only a few dozen to be experimentally evaluated in the laboratory, in order to verify their activity against the pathogen. These procedures constitute the initial steps in the drug development pipeline. Her current focus is on the parasitic disease, Chagas, which is endemic in Brazil, with as many as three million people affected. Existing treatments are not very effective and have serious side effects. Dr. Salgado Ferreira is targeting the cruzain enzyme, the pathogen responsible for the disease, and is testing a number of cruzain inhibitors identified through rational drug design. Her work on the Zika virus, which struck Brazil very hard two years ago, focuses on a protease inhibitor that prevents viral replication. “Developing drugs is highly challenging” she emphasizes. “The greatest achievement for me, which is a big dream, would be to contribute to bringing a drug to market.”

 

 

NORTH AMERICA

Dr. Anela Choy

L’Oréal-UNESCO National Fellowship United States
Scripps Institution of Oceanography at University of California, San Diego
Biological sciences, oceanography

Through the burning of fossil fuels and consumption of seafood, humans worldwide have impacted ocean ecosystems. Understanding how all of the creatures in the open ocean interact and feed on one another is the focus of Dr. Anela Choy’s research. Additionally, pinpointing how multiple human impacts influence ocean food webs is critical to ensuring their sustained and healthy existence. For example, more than ten million tons of plastic enter the ocean each year.1 When ingested by marine animals, these plastics pose physical and chemical risks that are poorly known.

In addition to disentangling food web structure and function, Dr. Anela Choy’s work contributes crucial knowledge about the ecosystem impacts of marine plastic pollution and will aid in developing strategies to manage and conserve ocean ecosystems. She discovered that giant larvaceans, which are primitive marine animals, play a vital role in transporting plastics from the surface to the depths of the ocean. She is investigating the distribution patterns of contaminants like methylmercury and plastics in marine animals from the bottom of the food chain right up to the fish consumed by humans. Dr. Choy works on stateof- the-art undersea vehicles from which she can directly observe and sample animals from deep-sea ecosystems, which represent the largest living spaces on Earth. Having just accepted a position at the Scripps Institution of Oceanography, one of the premier oceanographic institutes in the world, Dr. Choy is preparing to set up her laboratory at the University of California, San Diego in Fall 2018. One of her first projects is to examine the chemical extent of plastic pollution in the deep sea: the small fish, squid and crustaceans she will study are the pillars of ocean food webs and primary food sources for commercially important fish. “I hope my work will raise awareness about the intimate links between human societies and the seemingly disconnected deep ocean environment, which we all ultimately depend on.”

1 - Jambeck et al. 2015, Plastic waste inputs from land into the ocean.